
XT5 Compiler
Resources

Go to Menu

2

Page 2 Outline

•  Introduction
•  PGI® compilers

–  Optimization-Related PGI Compiler Options
–  Getting Started with PGI Compiler Optimizations
–  Optimization Categories (Node Level Tuning)
–  PGI Documentation and Support

•  Cray X86 compilers
–  Getting Started with Cray Compiler Optimizations
–  Optimization Options
–  Loopmark: Compiler Feedback
–  Example: Cray loopmark messages for Resid
–  Cray X86 Related Publications

•  Resources for Users

Go to Menu

3

Page 3 Foreword

•  Source code that is readable, maintainable, and produces
correct results is not always organized for efficient execution.
Normally, the first step in the program development process
involves producing code that executes and produces the
correct results. This first step usually involves compiling
without much worry about optimization. After code is
compiled and debugged, code optimization and parallelization
become an issue.

•  Invoking one of the PGI/GNU/Intel/Cray/Pathscale compiler
commands with certain options instructs the compiler to
generate optimized code. Optimization is not always
performed since it increases compilation time and may make
debugging difficult. However, optimization produces more
efficient code that usually runs significantly faster than code
that is not optimized.

Go to Menu

4

Page 4 Outline: Introduction

Go to Menu

–  Parallel Compiling on Jaguar

–  System Parallel Compilers

–  Wrappers and Compiling Tips

–  System Serial Compilers

–  Default Compilers

–  MPI Codes

5

Page 5 Parallel Compiling on Jaguar

•  Jaguar has two kinds of nodes:
–  Compute Nodes running the CNL OS
–  Service and login nodes running Linux

•  To build a code for the compute nodes, you should use the Cray wrappers
cc, CC, and ftn. The wrappers will call the appropriate compiler which
will use the appropriate header files and link against the appropriate
libraries. Use of wrappers is crucial for building the parallel codes on Cray.

•  We highly recommend that the cc, CC, and ftn wrappers be used when
building for the compute nodes! Both parallel and serial codes.

•  To build a code for the Linux service nodes, you should call the compilers
directly.

•  We strongly suggest that you don’t call the compilers directly if you are
building code to run on the compute nodes.

Go to Menu

6

Page 6

System Parallel Compilers

Language Compiler

C cc

C++ CC

Fortran 77, 90 and 95 ftn

Go to Menu

The following compilers should be used to build codes on Jaguar!
Use these compilers

Note that cc, CC and ftn are actually the Cray XT Series wrappers for
invoking the PGI, GNU, Intel or Pathscale compilers (discussed later…)

7

Page 7 Wrappers and Compiling Tips

•  Why to use wrappers to build (compile and link) the code:
–  Automatically point to correct compiler based on modules

loaded
–  Wrappers automatically find and include paths and libraries

of loaded modules (e.g., mpi, libsci)

•  Use same makefile for all compilers*

•  Calling base compilers directly (e.g., pgf90) results in serial
code that runs only on login nodes
–  Not what you want! Use wrapper instead and run on

compute nodes
–  Discourteous to other users to do production work on login

nodes
* Except compiler-specific flags Go to Menu

8

Page 8 System Serial Compilers

Go to Menu

•  Available compilers:

–  Portland Croup (PGI). Module name: PrgEnv-pgi
ь  pgcc
ь  pgCC
ь  pgf90/pgf95
ь  pgf77

–  GNU. Module name: PrgEnv-gnu
ь  gcc
ь  g++
ь  Gfortran

–  Intel. Module name: PrgEnv-intel
ь  icc (c/c++ codes)
ь  ifort

–  Cray compilers. Module name: PrgEnv-cray
ь  craycc
ь  crayCC
ь  crayftn

–  Pathscale. Module name: PrgEnv-pathscale
ь  pathcc
ь  pathCC
ь  path90/pathf95 (only available if gcc/

4.2.1 or higher is loaded)

Note that the man pages for the system
compilers will only give the most basic
information, i.e.
%man cc
%man CC
%man ftn

The man pages with the specific compiler
options can be accessed by using the
names of the serial compilers on this slide:
%man pgcc
%man g++
%man crayftn

9

Page 9 Default Compilers

•  Default compiler is PGI. The list of all packages is obtained by
–  module avail PrgEnv

•  To use the Cray wrappers with other compilers the programming
environment modules need to be swapped, i.e.
–  module swap PrgEnv-pgi PrgEnv-gnu
–  module swap PrgEnv-pgi PrgEnv-cray
–  module swap PrgEnv-pgi PrgEnv-intel
–  module swap PrgEnv-pgi PrgEnv-pathscale

•  To just use the GNU/Cray compilers directly load the GNU/Cray
module you want:
–  module load PrgEnv-gnu/2.1.50HD
–  module load PrgEnv-cray/1.0.1

Go to Menu

10

Page 10 MPI Codes

•  All system compilers (PGI, GNU, Intel, Cray, Pathscale)
can handle MPI standard specification parallel codes
through the use of compiler wrappers (cc, ftn, CC)

•  MPT – Cray’s MPI library
– Use latest MPT (4.0.0)

•  Default settings are
– Some codes may benefit from setting or adjusting the

environment variable settings.
•  More information is available on man pages “man mpi”

Go to Menu

11

Page 11 Outline: PGI® compilers

Go to Menu

–  Portland Group (PGI)

–  List of the Compiler Option Categories

–  PGI Basic Compiler Usage

–  Flags to support language dialects

–  Specifying the target architecture

–  Flags for debugging aids

–  Useful Compiler Flags

12

Page 12 Portland Group (PGI)

•  Cray provides the Portland Group (PGI) compilers as

part of several programming environments on Jaguar.

•  PGI compilers are loaded by default.

Go to Menu

13

Page 13 List of the Compiler Option Categories

•  Overall Options
•  Optimization Options (covered in this document)
•  Debugging Options
•  Preprocessor Options
•  Assembler Options
•  Linker Options
•  Language Options
•  Target-specific Options

Description of the following options is provided by PGI man
pages:

Go to Menu

14

Page 14 PGI Basic Compiler Usage

•  A compiler driver interprets options and invokes pre-
processors, compilers, assembler, linker, etc.

•  Options precedence: if options conflict, last option on
command line takes precedence

•  Use -Minfo and -Mneginfo to see a listing of
optimizations and transformations performed by the
compiler

•  Use -help to list all options or see details on how to use a
given option, e.g. pgf90 -Mvect -help

•  Use man pages for more details on options, e.g. “man
pgf90”

•  Use –v to see under the hood
Go to Menu

15

Page 15 Flags to support language dialects

•  Fortran
–  ftn
–  Suffixes .f, .F, .for, .fpp, .f90, .F90, .f95, .F95
–  -Mextend, -Mfixed, -Mfreeform
–  Type size –i2, -i4, -i8, -r4, -r8, etc.
–  -Mcray, -Mbyteswapio, -Mupcase, -Mnomain, -

Mrecursive, etc.
•  C/C++

–  cc, CC
–  Suffixes .c, .C, .cc, .cpp, .i
–  -B, -c89, -c9x, -Xa, -Xc, -Xs, -Xt
–  -Msignextend, -Mfcon, -Msingle, -Muchar, -Mgccbugs

Go to Menu

16

Page 16 Specifying the target architecture

•  -tp target - Specify the type of the target processor;
•  The default in the absence of the -tp flag is to compile for the type of

CPU on which the compiler is running.
•  The targets are:

-tp k8-64 - AMD Opteron or Athlon-64 in 64-bit mode.
-tp amd64e - AMD Opteron revision E or later, in 64-bit mode;

includes SSE3 instructions
-tp x64 - Single binary where each procedure is optimized for

the AMD Opteron in 64-bit mode; the selection of which
optimized copy to execute is made at run time depending on the
machine executing the code.

-tp k8-32,k7,p7,piv,piii,p6,p5,px for 32 bit code

Go to Menu

17

Page 17 Flags for debugging aids

•  -g generates symbolic debug information used by a
debugger

•  -gopt generates debug information in the presence of
optimization

•  -Mbounds adds array bounds checking
•  -v gives verbose output, useful for debugging system

or build problems
•  -Minfo provides feedback on optimizations made by

the compiler
•  -S or –Mkeepasm to see the exact assembly generated

Go to Menu

18

Page 18 Useful Compiler Flags

General

Flag Comments
-mp=nonuma Compile multithreaded

code using OpenMP
directives

Debugging

Go to Menu

Flag Comments
-g For debugging

symbols; put first
-Ktrap=fp Trap floating point

exceptions
-Mchkptr Checks for unintended

dereferencing of null
pointers

19

Page 19

Optimization-Related PGI Compiler
Options
•  The compilers optimize code according to the specified

optimization level. You can use a number of options to specify
the optimization levels, including –O, –Mvect, –Mipa, and –
Mconcur. In addition, you can use several of the –M<pgflag>
switches to control specific types of optimization and
parallelization.

•  The optimization options are:

–fast –Minline –Mpfi –Mvect

–Mconcur –Mipa=fast –Mpfo –O

–Minfo –Mneginfo –Munroll –Msafeptr
Go to Menu

20

Page 20

Optimization-Related PGI Compiler
Options (continued)
Option Description
–fast Generally optimal set of flags for targets that support SSE

capability.
–fastsse Generally optimal set of flags for targets that include SSE/SSE2

capability.
–M<pgflag> Selects variations for code generation and optimization.
–mp[=all,
align, bind,
[no]numa]

Interpret and process user-inserted shared-memory parallel
programming directives.

–O<level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.
–pc <val> (–tp px/p5/p6/piii targets only) Set precision globally for x87

floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

–Mprof=time Instrument the generated executable to produce a gprof-style

Go to Menu

21

Page 21 Optimization-Related PGI Compiler Options
(continued)

•  Traditional optimization controlled through -O[<n>], n is 0 to 4.
•  -fastsse and -fast are equal to -O2 -Munroll=c:1 -Mnoframe –

Mlre -Mvect=sse, -Mscalarsse -Mcache_align -Mflushz
–  For -Munroll, c specifies completely unroll loops with this loop count or

less
–  -Munroll=n:<m> says unroll other loops m times

•  -Mcache_align aligns top level arrays and objects on cache-line
boundaries

•  -Mflushz flushes SSE denormal numbers to zero
•  -Mnoframe does not set up a stack frame
•  -Mlre is loop-carried redundancy elimination

Go to Menu

22

Page 22 Outline: Getting Started with PGI Compiler
Optimizations

–  Quick Start

–  Options for Getting Help

–  Options for Getting Information

–  Common Performance Challenges

–  What is Vectorization on x64 CPUs?

–  Optimization Strategies

Go to Menu

23

Page 23 Quick Start

•  To get started quickly with optimization, a good set of options to use with
any of the PGI compilers is –fast –Mipa=fast. For example:

 $ ftn -fast -Mipa=fast prog.f
•  For all of the PGI Fortran, C, and C++ compilers, the –fast –Mipa=fast

options generally produce code that is well-optimized without the
possibility of significant slowdowns due to pathological cases.

–  The –fast option is an aggregate option that includes a number of
individual PGI compiler options; which PGI compiler options are
included depends on the target for which compilation is performed.

–  The –Mipa=fast option invokes interprocedural analysis including
several IPA suboptions.

–  For C++ programs, add -Minline=levels:10 --no_exceptions as
shown here:

 $ CC -fast -Mipa=fast -Minline=levels:10 --no_exceptions prog.cc
Go to Menu

24

Page 24 -help and -Minfo

–help
–  You can see a specification of any command line option by invoking any of the

PGI compilers with -help in combination with the option in question, without
specifying any input files. For example, you might want information on -O:

–  $ pgf95 -help –O
–  Or you can see the full functionality of -help itself, which can return

information on either an individual option or groups of options:
–  $ pgf95 -help –help

–Minfo
–  Used to display compile-time optimization listings.
–  When this option is used, the PGI compilers issue informational messages to

stderr as compilation proceeds. From these messages, you can determine which
loops are

•  optimized using unrolling,
•  SSE instructions,
•  vectorization,
•  parallelization,
•  interprocedural optimizations
•  various miscellaneous optimizations.
•  you can also see where and whether functions are inlined. Go to Menu

25

Page 25 –Mneginfo and –dryrun

–Mneginfo
–  Used to display informational messages listing why certain

optimizations are inhibited.

–dryrun
–  Can be useful as a diagnostic tool if you need to see the

steps used by the compiler driver to preprocess, compile,
assemble and link in the presence of a given set of
command line inputs.

–  If –dryrun option is specified, these steps will be printed to
stderr but are not actually performed.

–  For example, you can use this option to inspect the default
and user-specified libraries that are searched during the link
phase, and the order in which they are searched by the
linker.

Go to Menu

26

Page 26 Common Performance Challenges

•  Vectorization
– What is vectorization? Is my code vectorizing?
– Conflicts with C++ and F90 “ease of use”

programming techniques. C and C++ pointer
issues that prevent vectorization.

•  Multi-core issues
– Memory bandwidth
– MPI, OpenMP, and auto parallelization

•  IPA – Interproceedural Analysis and Inlining
–  IPA and inline enabled libraries

Go to Menu

27

Page 27 What is Vectorization on x64 CPUs?

•  By a Programmer: writing or modifying algorithms and
loops to enable or maximize generation of x64 packed
Streaming SIMD Extensions (SSE) instructions by a
vectorizing compiler

•  By a Compiler: identifying and transforming loops to
use packed SSE arithmetic instructions which operate on
more than one data element per instruction

•  For more information, please, refer to the “Software
Optimization Guide for AMD64 Processors” at
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/
25112.PDF

Go to Menu

28

Page 28 Optimization Strategies

•  Establish a workload

•  Optimization from the top-down

•  Use of proper tools, methods

•  Processor level optimizations, parallel methods

•  Different flags/features for different types of code

Go to Menu

29

Page 29 Outline: Optimization Categories (Node
Level Tuning)

Go to Menu

–  Local and Global Optimization

–  Vectorization

–  Interprocedural Analysis (IPA)

–  Function Inlining

–  SMP Parallelization

–  Miscellaneous Optimizations

Local and Global Optimization

Go to Menu

31

Page 31 Local Optimization

•  This optimization is performed on a block-by-block basis
within a program’s basic blocks. A basic block is a sequence
of statements in which the flow of control enters at the
beginning and leaves at the end without the possibility of
branching, except at the end.

•  The PGI compilers perform many types of local optimization
including:
–  algebraic identity removal,
–  constant folding,
–  common sub-expression elimination,
–  redundant load and store elimination,
–  scheduling,
–  strength reduction,
–  peephole optimizations.

Go to Menu

32

Page 32 Global Optimization

•  This optimization is performed on a program unit
over all its basic blocks. The optimizer performs
control-flow and data-flow analysis for an entire
program unit. All loops, including those formed by
IFs and GOTOs, are detected and optimized.

•  Global optimization includes:
–  constant propagation,
–  copy propagation,
–  dead store elimination,
–  global register allocation,
–  invariant code motion,
–  induction variable elimination.

Go to Menu

33

Page 33 Local and Global Optimization using –O

 Using the PGI compiler commands with the –Olevel option (the capital O
is for Optimize), you can specify any of the following optimization levels:

–O0 Level zero specifies no optimization. A basic block is generated for each
language statement.

–O1 Level one specifies local optimization. Scheduling of basic blocks is
performed. Register allocation is performed.

–O2 Level two specifies global optimization. This level performs all level-one
local optimization as well as level two global optimization. If optimization
is specified on the command line without a level, level 2 is the default.

–O3 Level three specifies aggressive global optimization. This level performs
all level-one and level-two optimizations and enables more aggressive
hoisting and scalar replacement optimizations that may or may not be
profitable.

–O4 Level four performs all level-one, level-two, and level-three optimizations
and enables hoisting of guarded invariant floating point expressions.

Note: If you use the –O option to specify optimization and do not specify a level,
then level-two optimization (–O2) is the default. Go to Menu

34

Page 34 Local and Global Optimization using –O
(continued)

•  You can explicitly select the optimization level on the command line. For
example, the following command line specifies level-two optimization
which results in global optimization:

•  $ pgf95 -O2 prog.f
•  Specifying –O on the command-line without a level designation is

equivalent to –O2. The default optimization level changes depending on
which options you select on the command line. For example, when you
select the –g debugging option, the default optimization level is set to
level-zero (–O0). However, if you need to debug optimized code, you can
use the -gopt option to generate debug information without perturbing
optimization.

•  As noted previously, the –fast option includes –O2 on all x86 and x64
targets. If you want to override the default for–fast with –O3 while
maintaining all other elements of –fast, simply compile as follows:

•  $ pgf95 -fast -O3 prog.f
Go to Menu

Vectorization

Go to Menu

36

Page 36

Loop Optimization: Unrolling, Vectorization, and
Parallelization

•  The performance of certain classes of loops may be
improved through vectorization or unrolling options.
–  Vectorization transforms loops to improve memory access

performance and make use of packed SSE instructions
which perform the same operation on multiple data items
concurrently.

–  Unrolling replicates the body of loops to reduce loop
branching overhead and provide better opportunities for
local optimization, vectorization and scheduling of
instructions.

•  Performance for loops on systems with multiple
processors may also improve using the parallelization
features of the PGI compilers.

Go to Menu

37

Page 37 Vectorizable F90 Array Syntax Data is
REAL*4

350 !
351 ! Initialize vertex, similarity and coordinate arrays
352 !
353 Do Index = 1, NodeCount
354 IX = MOD (Index - 1, NodesX) + 1
355 IY = ((Index - 1) / NodesX) + 1
356 CoordX (IX, IY) = Position (1) + (IX - 1) * StepX
357 CoordY (IX, IY) = Position (2) + (IY - 1) * StepY
358 JetSim (Index) = SUM (Graph (:, :, Index) * &
359 & GaborTrafo (:, :, CoordX(IX,IY), CoordY(IX,IY)))
360 VertexX (Index) = MOD (Params%Graph%RandomIndex (Index) - 1, NodesX) + 1
361 VertexY (Index) = ((Params%Graph%RandomIndex (Index) - 1) / NodesX) + 1
362 End Do

Inner “loop” at line 358 is vectorizable, can used packed SSE instructions

Go to Menu

38

Page 38 –fastsse –Minfo

% pgf95 -fastsse -Mipa=fast -Minfo -S graphRoutines.f90
…
localmove:
 334, Loop unrolled 1 times (completely unrolled)
 343, Loop unrolled 2 times (completely unrolled)
 358, Generated an alternate loop for the inner loop

 Generated vector sse code for inner loop
 Generated 2 prefetch instructions for this loop
 Generated vector sse code for inner loop
 Generated 2 prefetch instructions for this loop

…

–fastsse to Enable SSE Vectorization
–Minfo to List Optimizations to stderr

Go to Menu

39

Page 39

Scalar SSE: Vector SSE:

Facerec Scalar: 104.2 sec
Facerec Vector: 84.3 sec

.LB6_668:
lineno: 358
 movss -12(%rax),%xmm2
 movss -4(%rax),%xmm3
 subl $1,%edx
 mulss -12(%rcx),%xmm2
 addss %xmm0,%xmm2
 mulss -4(%rcx),%xmm3
 movss -8(%rax),%xmm0
 mulss -8(%rcx),%xmm0
 addss %xmm0,%xmm2
 movss (%rax),%xmm0
 addq $16,%rax
 addss %xmm3,%xmm2
 mulss (%rcx),%xmm0
 addq $16,%rcx
 testl %edx,%edx
 addss %xmm0,%xmm2
 movaps %xmm2,%xmm0
 jg .LB6_625

.LB6_1245:
lineno: 358
 movlps (%rdx,%rcx),%xmm2
 subl $8,%eax
 movlps 16(%rcx,%rdx),%xmm3
 prefetcht0 64(%rcx,%rsi)
 prefetcht0 64(%rcx,%rdx)
 movhps 8(%rcx,%rdx),%xmm2
 mulps (%rsi,%rcx),%xmm2
 movhps 24(%rcx,%rdx),%xmm3
 addps %xmm2,%xmm0
 mulps 16(%rcx,%rsi),%xmm3
 addq $32,%rcx
 testl %eax,%eax
 addps %xmm3,%xmm0
 jg .LB6_1245:

Scalar SSE vs. Vector SSE

Go to Menu

40

Page 40 Vectorizable C Code Fragment?

217 void func4(float *u1, float *u2, float *u3, …
 …
221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

% pgcc –fastsse –Minfo functions.c
func4:
 221, Loop unrolled 4 times
 221, Loop not vectorized due to data dependency
 223, Loop not vectorized due to data dependency

Go to Menu

41

Page 41 Pointer Arguments Inhibit Vectorization

217 void func4(float *u1, float *u2, float *u3, …
 …
221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

% pgcc –fastsse –Msafeptr –Minfo functions.c
func4:
 221, Generated vector SSE code for inner loop
 Generated 3 prefetch instructions for this loop
 223, Unrolled inner loop 4 times

Go to Menu

42

Page 42 C Constant Inhibits Vectorization

217 void func4(float *u1, float *u2, float *u3, …
 …
221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

% pgcc –fastsse –Msafeptr –Mfcon –Minfo functions.c
func4:
 221, Generated vector SSE code for inner loop
 Generated 3 prefetch instructions for this loop
 223, Generated vector SSE code for inner loop
 Generated 4 prefetch instructions for this loop Go to Menu

43

Page 43 -Msafeptr Option and Pragma

#pragma [scope] [no]safeptr={arg | local | global | static | all},…

Where scope is global, routine or loop

–M[no]safeptr[=all | arg | auto | dummy | local | static | global]

all all pointers are safe
arg argument pointers are safe
local local pointers are safe
static static local pointers are safe
global global pointers are safe

Go to Menu

44

Page 44 Common Barriers to SSE Vectorization

Potential Dependencies & C Pointers – Give compiler more
info with –Msafeptr, pragmas, or restrict type qualifer

Function Calls – Try inlining with –Minline or –Mipa=inline

Type conversions – manually convert constants or use flags

Too few iterations – Usually better to unroll the loop

Real dependencies – Must restructure loop, if possible

Go to Menu

45

Page 45 Barriers to Efficient Execution of Vector
SSE Loops

•  Not enough work – vectors are too short

•  Vectors not aligned to a cache line boundary

•  Non-unity strides

•  May run out of space to handle all the
instructions

•  Code bloat if altcode is generated
Go to Menu

Interprocedural Analysis (IPA)

Go to Menu

47

Page 47 Interprocedural Analysis (IPA) and
Optimization

•  Interprocedural analysis (IPA) allows use of information across function call
boundaries to perform optimizations that would otherwise be unavailable. For
example, if the actual argument to a function is in fact a constant in the caller, it
may be possible to propagate that constant into the callee and perform optimizations
that are not valid if the dummy argument is treated as a variable.

•  A wide range of optimizations are enabled or improved by using IPA, including but
not limited to
–  data alignment optimizations,
–  argument removal,
–  constant propagation,
–  pointer disambiguation,
–  pure function detection,
–  F90/F95 array shape propagation,
–  data placement,
–  vestigial function removal,
–  automatic function inlining,
–  inlining of functions from pre-compiled libraries,
–  interprocedural optimization of functions from pre-compiled libraries.

Go to Menu

48

Page 48

What can Interprocedural Analysis and Optimization with
–Mipa do for You?

•  Interprocedural constant propagation

•  Pointer disambiguation

•  Alignment detection, Alignment propagation

•  Global variable mod/ref detection

•  F90 shape propagation

•  Function inlining

Go to Menu

49

Page 49 Effect of IPA on the WUPWISE Benchmark

•  –Mipa=fast => constant propagation => compiler sees
complex matrices are all 4x3 => completely unrolls loops

•  –Mipa=fast,inline => small matrix multiplies are all inlined

PGF95 Compiler Options Execution Time in
Seconds

–fastsse 156.49
–fastsse –Mipa=fast 121.65
–fastsse –Mipa=fast,inline 91.72

Go to Menu

50

Page 50 Using Interprocedural Analysis

•  Must be used at both compile time and link time

•  Non-disruptive to development process – edit/build/run

•  Speed-ups of 5% - 10% are common

•  –Mipa=safe:<name> - safe to optimize functions which call

or are called from unknown function/library name

•  –Mipa=libopt – perform IPA optimizations on libraries

•  –Mipa=libinline – perform IPA inlining from libraries

Go to Menu

51

Page 51 Function Inlining

•  This optimization allows a call to a function to
be replaced by a copy of the body of that
function. This optimization will sometimes
speed up execution by eliminating the function
call and return overhead.

•  Function inlining may also create opportunities
for other types of optimization.

•  Function inlining is not always beneficial.
•  When used improperly it may increase code

size and generate less efficient code.
Go to Menu

52

Page 52 Explicit Function Inlining

–Minline[=[lib:]<inlib> | [name:]<func> | except:<func> |
 size:<n> | levels:<n>]

[lib:]<inlib> Inline extracted functions from inlib
[name:]<func> Inline function func
except:<func> Do not inline function func
size:<n> Inline only functions smaller than n

 statements (approximate)
levels:<n> Inline n levels of functions

For C++ Codes, PGI Recommends IPA-based
inlining or –Minline=levels:10!

Go to Menu

53

Page 53 Specific recommendations for C++

•  Encapsulation; Data hiding
–  small functions, inline!

•  Exception handling
–  use –no_exceptions until 7.0

•  Overloaded operators, overloaded functions
–  Can be used

•  Pointer Chasing
–  -Msafeptr, restrict qualifier

•  Templates, Generic Programming
–  Can be used. However, aggressive use of templates may still run into

problems
•  Inheritance, polymorphism, virtual functions

–  runtime lookup or check, no inlining, potential performance penalties

Go to Menu

54

Page 54 Miscellaneous Optimizations

•  –Mfprelaxed
–  single-precision sqrt, rsqrt, div performed using reduced-

precision reciprocal approximation.
–  Caution: This should only be used if the code can tolerate a loss

of precision (2-3 decimal points)
•  –Mprefetch=d:<p>,n:<q>

–  control prefetching distance, max number of prefetch
instructions per loop

•  –M[no]movnt
–  disable / force non-temporal moves

•  –V[version]
–  to switch between PGI releases at file level

•  –Mvect=noaltcode
–  disable multiple versions of loops

Go to Menu

55

Page 55 PGI Documentation and Support

•  The Portland Group website

–  http://www.pgroup.com/

•  PGI provided documentation

–  http://www.pgroup.com/resources/docs.htm

•  PGI User Forums

–  https://www.pgroup.com/userforum/index.php

•  PGI FAQs, Tips & Techniques pages

Go to Menu

56

Page 56 Cray X86 compilers

•  Cray provides its own Cray X86 high-performance compiler

set as part of several programming environments on Jaguar.

•  To switch to Cray X86 compilers from PGI compilers loaded

by default, please, refer to the Introduction section of this

document.

Go to Menu

57

Page 57 Outline: Getting Started with Cray Compiler
Optimizations

–  Quick Start

–  Directives

–  Current Strengths

Go to Menu

58

Page 58 Quick Start

•  Make sure it is available
–  module avail PrgEnv-cray

•  To access the Cray compiler
–  module load PrgEnv-cray

•  To target the various chips
–  module load xtpe-barcelona,shanghi,istanbul]

•  Once you have loaded the module “cc” and “ftn” are
the Cray compilers
–  Recommend just using default options
–  Use –rm (fortran) and –hlist=m (C) to find out what

happened
•  Example: ftn –rm –c file.f90

Go to Menu

59

Page 59 Resources for Users: Optimization-Related
References

•  Software Optimization Guide for AMD64 Processors (Guidelines for serial optimizations
specific to AMD Opteron on the AMD site):
 http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF

•  OpenMP Specifications/Documentation:
 http://openmp.org/wp/openmp-specifications/

•  OpenMP tutorial from LLNL
 https://computing.llnl.gov/tutorials/openMP/

Go to Menu

60

Page 60 Resources for Users: Getting Started

•  PGI Compilers for XT5

–  http://www.pgroup.com/resources/docs.htm

•  Cray Compilers

–  http://docs.cray.com/

•  Gnu Compilers

–  http://gcc.gnu.org/onlinedocs/

•  Intel Compilers

–  http://software.intel.com/en-us/intel-compilers/

•  Pathscale Compilers

–  http://www.pathscale.com/

Go to Menu

61

Resources for Users: More Information

•  NCCS website

http://www.nccs.gov/

•  Cray Documentation

http://docs.cray.com/

•  Contact us

help@nccs.gov

Go to Menu

